Dynamic Peer-To-Peer Overlays for Voice Systems

Krishna Kishore Dhara
Venkatesh Krishnaswamy
Avaya Labs Research

Salman Baset
Columbia University
Outline

- Background/Motivation
- Overlay Architecture
- P2P Overlays in SIP
- Examples of Overlays
- Summary/Conclusion
Value of P2P in the Enterprise

P2P Voice Solutions

- Based entirely on phones => low cost
- Plug and Play with minimal admin
- For IP-connected branches or small offices – no additional equipment required for these VOIP phones

Enterprise Services/Features are crucial

- Voice mail
- Conferencing
- Group features, Bridging, etc.
Implementing P2P Voice Systems

- **Flat**
 - Broadcast/Multicast
 - Not scalable
 - Small Office
 - Simple

- **Hierarchical**
 - Super Node/Proxy
 - Somewhat scalable
 - Not very simple

- **Structured**
 - Distributed Hash Table
 - Scalable
 - Complex
Heterogeneous Enterprise Networks

Heterogeneous devices have different
- network/bandwidth requirements
- processing
- security
- join/leave intervals

Users also have different
- preferences
- security – auth and trust mgmt
- multiple device identities

Services also have different
- network requirements
- data storage and processing
- security
P2P Voice Systems

Problem: How can we design a voice/communication system that can
- realize different capabilities and requirements of heterogeneous enterprise networks
- separate P2P properties from the underlying voice and transport protocol.

We propose
- a layered framework that capture the device, user, and service overlays
- a mechanism that decouples P2P overlay and the underlying voice protocol (SIP)
P2P Voice Systems – Current Approaches

- Skype, Avaya
 - Proprietary
- XMPP, JXTA – text based (XML) protocols
 - Need further exploration
- SIP P2P Systems (Kundan and Schulzrinne, Bryan et al)
 - Not modular overlays, close integration with SIP
A Layered Framework for P2P Systems

Physical Overlay:
Overlay peer connectivity, discovery, recovery

Logical Overlay:
Implements device features, user features, and services
Constructed using physical overlay mechanisms.

Join/Leave

Distributing Voice Mail as a P2P Overlay.
P2P Over SIP

- Physical overlay uses SIP
 - Inherently P2P
 - Leverage mechanisms Routing, Authentication, etc.
 - Mature VOIP signaling model

- Logical overlay as XML bodies in SIP Messages
 - Prevents SIP protocol bloating
 - Separates P2P algorithm from protocol – therefore easier to craft an overlay structure that is optimized to the service being delivered
The Overlay Stack

- **Connectivity, NAT traversal etc.**
- **Device Identity**
- **Trust Management**
- **User Identity**
- **Advanced Features** e.g. Conferencing, Group Features, ACD

Examples from our prototype

SIP+XML

SIP
Example: Trust Management Overlay

- How can nodes trust each other?
- PKI-based solution
- Certify public key at login
 - User A: public key P_uA, private key P_rA
 - Login server: public key P_uLS, private key P_rLS
 - Certify user A public key (P_uA) at login $P_rLS \{ P_uA \}$
- Proof of Identity
 - Certified public key
 - Digital Signature
Example: User Overlay – Forming a (Chord) Structure

Each node is a: UA, Registrar, Proxy

Bootstrap Node

REGISTER sip:atlanta.com SIP/2.0
From: sip:bob@atlanta.com;tag=11
Content-Type: application/p2p+xml

<?xml version="1.0"?><P2Pxml><BootstrapRegRequest><NodeID>2</NodeID><NodeURL>sip:10.8.6.176</NodeURL><Certificate>Xj1...<truncated></Certificate><Signature>v2R...<truncated></Signature></BootstrapRegRequest></P2Pxml>

SIP/2.0 200 OK
From: sip:bob@atlanta.com;tag=11
Content-Type: application/p2p+xml

<?xml version="1.0"?><P2Pxml><BootstrapOK><NodeID>0</NodeID><Certificate>fFD...<truncated></Certificate><Signature>v2p...<truncated></Signature><SuccessorURL>sip:alice@atlanta.com:5060</SuccessorURL><SuccessorID>0</SuccessorID><PredecessorURL>sip:pred@atlanta.com:5060</PredecessorURL><PredecessorID>6</PredecessorID><RefreshRate>100</RefreshRate><SuccessorList></SuccessorList><FingerTable>...<finger table info></FingerTable></BootstrapOK></P2Pxml>
Example: User Overlay: Locating Users

CALL: 29=H(vernick@avaya.com)

```
<table>
<thead>
<tr>
<th>Key</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>29+1</td>
<td>30</td>
</tr>
<tr>
<td>29+2</td>
<td>1</td>
</tr>
<tr>
<td>29+4</td>
<td>1</td>
</tr>
<tr>
<td>29+8</td>
<td>6</td>
</tr>
<tr>
<td>29+16</td>
<td>15</td>
</tr>
</tbody>
</table>
```

```
Key node
2+1 = 3   3
2+2 = 4   6
2+4 = 6   6
2+8 = 10  10
2+16=18  24
```

baset@avaya.com

```
<table>
<thead>
<tr>
<th>Key</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>24+1</td>
<td>25</td>
</tr>
<tr>
<td>24+2</td>
<td>26</td>
</tr>
<tr>
<td>24+4</td>
<td>28</td>
</tr>
<tr>
<td>24+8</td>
<td>32</td>
</tr>
<tr>
<td>24+16</td>
<td>15</td>
</tr>
</tbody>
</table>
```

```
Key node
2+1 = 3   3
2+2 = 4   6
2+4 = 6   6
2+8 = 10  10
2+16=18  24
```

```
Key node
29+1 = 30  30
29+2 = 31  1
29+4 = 3  6
29+8 = 5  6
29+16=13  15
```

CAL: 29=H(vernick@avaya.com)

```
Key node
2+1 = 3   3
2+2 = 4   6
2+4 = 6   6
2+8 = 10  10
2+16=18  24
```

```
<table>
<thead>
<tr>
<th>Key</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>24+1</td>
<td>25</td>
</tr>
<tr>
<td>24+2</td>
<td>26</td>
</tr>
<tr>
<td>24+4</td>
<td>28</td>
</tr>
<tr>
<td>24+8</td>
<td>32</td>
</tr>
<tr>
<td>24+16</td>
<td>15</td>
</tr>
</tbody>
</table>
```

```
Key node
2+1 = 3   3
2+2 = 4   6
2+4 = 6   6
2+8 = 10  10
2+16=18  24
```

```
<table>
<thead>
<tr>
<th>Key</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>29+1</td>
<td>30</td>
</tr>
<tr>
<td>29+2</td>
<td>1</td>
</tr>
<tr>
<td>29+4</td>
<td>1</td>
</tr>
<tr>
<td>29+8</td>
<td>6</td>
</tr>
<tr>
<td>29+16</td>
<td>15</td>
</tr>
</tbody>
</table>
```

CALL: 29=H(vernick@avaya.com)

```
Key node
2+1 = 3   3
2+2 = 4   6
2+4 = 6   6
2+8 = 10  10
2+16=18  24
```

```
<table>
<thead>
<tr>
<th>Key</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>24+1</td>
<td>25</td>
</tr>
<tr>
<td>24+2</td>
<td>26</td>
</tr>
<tr>
<td>24+4</td>
<td>28</td>
</tr>
<tr>
<td>24+8</td>
<td>32</td>
</tr>
<tr>
<td>24+16</td>
<td>15</td>
</tr>
</tbody>
</table>
```

```
Key node
2+1 = 3   3
2+2 = 4   6
2+4 = 6   6
2+8 = 10  10
2+16=18  24
```

```
<table>
<thead>
<tr>
<th>Key</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>29+1</td>
<td>30</td>
</tr>
<tr>
<td>29+2</td>
<td>1</td>
</tr>
<tr>
<td>29+4</td>
<td>1</td>
</tr>
<tr>
<td>29+8</td>
<td>6</td>
</tr>
<tr>
<td>29+16</td>
<td>15</td>
</tr>
</tbody>
</table>
```

CALL: 29=H(vernick@avaya.com)

```
Key node
2+1 = 3   3
2+2 = 4   6
2+4 = 6   6
2+8 = 10  10
2+16=18  24
```

```
<table>
<thead>
<tr>
<th>Key</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>24+1</td>
<td>25</td>
</tr>
<tr>
<td>24+2</td>
<td>26</td>
</tr>
<tr>
<td>24+4</td>
<td>28</td>
</tr>
<tr>
<td>24+8</td>
<td>32</td>
</tr>
<tr>
<td>24+16</td>
<td>15</td>
</tr>
</tbody>
</table>
```

```
Key node
2+1 = 3   3
2+2 = 4   6
2+4 = 6   6
2+8 = 10  10
2+16=18  24
```

```
<table>
<thead>
<tr>
<th>Key</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>29+1</td>
<td>30</td>
</tr>
<tr>
<td>29+2</td>
<td>1</td>
</tr>
<tr>
<td>29+4</td>
<td>1</td>
</tr>
<tr>
<td>29+8</td>
<td>6</td>
</tr>
<tr>
<td>29+16</td>
<td>15</td>
</tr>
</tbody>
</table>
```
Considerations in deploying P2P overlays

- Heterogeneity:
 - Heterogeneous nodes; may not be possible to map any “feature” to any node
 - Heterogeneous users; may not be possible to completely “flatten” user address space
 - User groups
 - Feature interactions

- Run-Time Overhead
 - Creating and maintaining overlay structures
 - Iterative/layered lookup

- Management and Administration
Many Open Issues

- Users
 - Mobility: Structures for “permanent” nodes and nodes that are mobile
 - Services for nodes/users that are not present

- Security
 - Authentication and Trust Management
 - Authorization and Encryption

- Network and NAT Traversal issues
 - Optimizations for bandwidth and connectivity
 - STUN, TURN, ICE for P2P systems

- Routing
 - Optimizations for finger table size, hops

- Storage
 ⇒ Can we leverage knowledge of enterprise network topology and user behaviors?
 - e.g. Organizational, administrative or network domains
 - e.g. Calling patterns, social networks
Conclusions

Summary: We presented
- a layered architecture for P2P voice systems
- a SIP P2P mechanism that separates the P2P overlays and the underlying signaling and media protocol
- two different overlay mechanism from our prototype implementation

Contributions: Our approach
- isolates concerns and restrictions at each layer
- allows choice of P2P protocol based on devices, users, and services with different properties
- allows dynamic swapping of P2P protocol