Using Physical Clocks for Replication in MANETs

Manuel Scholz,
Frank Bregulla
Freie Universität Berlin
Institute of Computer Science
14195 Berlin, Germany
{mscholz, bregulla}@inf.fu-berlin.de

Annihe Hinze
University of Waikato
Dept of Computer Science
Hamilton, NZ
hinze@cs.waikato.ac.nz
Motivation

• Why physical timestamps in mobile environments?
• Examples:
 • Disaster areas: coordination of firefighters and helpers
 ➔ Most recent information is needed
 • Mobile tourist information service
 • Distributed calendar
 • Distributed (mobile) database
 ➔ Resolve conflicting operations: abort the younger one (first come first serve)
Overview

• Introduction
• Scenario
• Synchronization Protocol
• Skew Vectors
• Grid Time
• Correctness
• Conclusion & Future Work
Introduction

• Goal: ordering of concurrent operations with physical clocks
 ▪ Problem: imprecisely synchronized physical clocks

• Basic idea of our hybrid approach:
 ▪ Physical clocks are used for temporal distant operations
 ▪ Logical clocks are used for temporal close operations
 ▪ Time grid

• Problems
 ▪ What exactly is temporal close / distant?
 ▪ Peers in MANET have to make same decision
Scenario

• Short term scenarios: one hour up to three days
 - Clock drift is disregarded

• 10 - 100 participating peers forming a replication group

• Communication via WLAN (802.11)

• Update anywhere / multimaster replication
 - Operations: first executed locally and then propagated
 - Dissemination to all peers (sync. protocol)
 ➔ Concurrent update operations

• Goal: global consistency – operations in same order
Time Synchronization Protocol

- External synchronization protocols (e.g. NTP) not suitable for MANETs
- Executed when peers meet for the first time
- Needs a predefined upper bound for round-trip of sync. message δ_{mrt}

- Simple and lightweight protocol:
 - Peers exchange their local clock values
 - When round-trip time of sync. message $< \delta_{\text{mrt}}$ protocol is finished
 - If not: protocol is repeated
 - Protocol also determines skew
Skew Vectors

- Every peer stores time skew to all other peers
- Different local time on all peers
- But: same order on all peers
- Example:
 - Updates \(u_1, u_2\) have diff. times on diff. peers
 - \(u_2\) always 2 min. after \(u_1\)
Message Delay Problem

- Message delay can cause different order

- Example:
 - Only 1 sec. between u_1 and u_2
 - Delay 2 and 2.5 sec
 - u_1 and u_2 are ordered differently
Grid Time

- Overlay time grid is used
- Timestamps are assigned to a grid time-slot
- Example:
 - u_1 and u_2 are in the same slot
 - u_3 is in the next slot
Grid Width

- Grid width must be greater than max delay
- Max delay: single delay \times max hops
- Single delay = \delta_{mrt}
- Max hops = (no peers) - 1
Correctness

To prove correctness of method we have to show:

1. All operations are in the same order on all peers
 ➔ All grid values of a peer are assigned to the corresponding grid values on all other peers.

2. All operations with a temporal distance greater than a given value \(2\delta_{\text{grid}}\) are ordered according to their physical clocks.
Correctness (Same Order on All Peers)

• Def. grid function:

\[
\text{grid}_a(t) = \left[\frac{t - \text{offset}_a}{\delta_{\text{grid}}} \right] \cdot \delta_{\text{grid}} + \text{offset}_a
\]

• Proof:

\[
\begin{align*}
g_{x,a} &= \text{grid}_a(g_{x,b} + m\text{-skew}_{ba}) \\
&= \text{grid}_a(g_{x,a} + m\text{-skew}_{ab} + m\text{-skew}_{ba}) \\
&= \text{grid}_a(g_{x,a} + \text{skew}_{ab} + \delta_{ab} + \text{skew}_{ba} + \delta_{ba}) \\
&= \text{grid}_a(g_{x,a} + \delta_{ab} + \delta_{ba}) \\
&= \text{grid}_a(g_{x,a})
\end{align*}
\]

\[
\begin{align*}
g_{x,b} &= g_{x,a} + m\text{-skew}_{ab} \\
m\text{-skew}_{ab} &= \text{skew}_{ab} + \delta_{ab} \\
(\text{skew}_{ab} &= -\text{skew}_{ba}) \\
(\delta_{ab} + \delta_{ba} &< \delta_{\text{grid}})
\end{align*}
\]
Correctness (Physical Clock Order)

- In which case are \(t_1 \) and \(t_2 \) ordered according to their physical clocks?

- Without message delay: minimal distance \(\delta_{\text{grid}} \)

- With message delay: worst case grid slots are shifted by \(\delta_{\text{grid}} \) because grid values cannot overlap

- \(|t_1 - t_2| > 2\delta_{\text{grid}} \) \(\Rightarrow \) physical clock ordering
Conclusion & Future Work

• Hybrid timestamping mechanism (time grid):
 ▪ Physical clocks are used for temporal distant operations (different grid slots)
 ▪ Logical clocks are used for temporal close operations (same grid slot)

• Local skew vectors are used to store the skew among the peers

• Grid size is determined by single round trip time δ_{mrt} and max number of hops needed for initialization

• Next steps:
 ▪ Refinement (time drift, bounded max hops, etc.)
 ▪ Further tests of implementation (emulation, repl. system)
Thank You!