Game Theoretic and Utility-Based Security in MP2P

Brent Lagesse & Mohan Kumar
Dept. of Computer Science Engineering
University of Texas -- Arlington
Motivating Example

Turn left, go 2 km

Turn right, go 300 meters, turn right, go 1 km
Perspective

- Bootstrapping
- Routing
- Resource Access
- Resource Access Control

- This talk is about Resource Access
Security in Context

- Malicious peers
 - Serve faulty resources
 - DoS
 - Steal information
- Benign peers may be unreliable

In this context, security means being able to get what we want, when we want it.
Reputation

- Most common solution
- A cooperative effort
- Peers pass reputation information to each other describing previous transactions

What do you think about C?
Reputation

- Most common solution
- A cooperative effort
- Peers pass reputation information to each other describing previous transactions

20 of 25 interactions have been good
Reputation

- **Advantages**
 - Many mechanisms are very effective against small number of attackers

- **Disadvantages**
 - Fails when most peers are malicious
 - Susceptible to startup attacks and one-time attacks
 - Fails when assumptions do not hold
System Goal

- Using reputation is difficult in some situations
 - Uncertain/Malicious systems
 - Systems with intermittent connectivity
 - Systems with peers that are very sensitive to attack

- Goal: Provide protection for peers in systems where reputation performs poorly
Utility Model

Utility = Benign Benefits + Malicious Benefits
- (Benign Costs + Malicious Costs)
- Victim Costs
- Discovery Costs

Benign Benefits
Benefit from Access To Resources
Benefit from Mechanisms (ie incentives)

Malicious Benefits
Benefit from Spying on Access
Benefit from Denying Access
Benefit from Misinforming the User
Utility Model

Utility =

\[\text{Benign Benefits} + \text{Malicious Benefits} - (\text{Benign Costs} + \text{Malicious Costs}) - \text{Victim Costs} - \text{Discovery Costs} \]

Benign Costs
- Cost of being in the system
- Cost of providing Resources
- Cost from mechanisms (ie, payments)

Malicious Costs
- Cost of Spying on Access
- Cost of Denying Access
- Cost of Misinforming the User
Utility Model

Utility =

Benign Benefits + Malicious Benefits
- (Benign Costs + Malicious Costs)
- Victim Costs
- Discovery Costs

Victim Costs
The cost incurred as a result of being a victim

Discovery Costs
The costs incurred as a result of being discovered as an attacker
Modeling Peers

- Purely Malicious
 - Malicious Benefits, Benign Costs, Malicious Costs, Discovery Costs

- Purely Benign
 - Benign Benefits, Benign Costs, Victim Costs

- Hybrid Malicious/Benign
 - All components
Resource Exploration

- Send a mixture of $p\%$ exploratory and $(100-p)\%$ real requests
- Effect
 - Increased number of Benign Costs
 - Decreased number of Victim Costs

If response is malicious then blacklist
How to choose p?

- **Game Theoretic approach**
 - Requires more knowledge than we will probably have

- **Utility bounded**
 - No guarantees, but at least tells us what to expect

\[
P_{\text{exp}} = \frac{\text{Malicious Benefit}}{\text{Discovery Cost} + \text{Malicious Benefit}}
\]

\[
P_{\text{attack}} = \frac{\text{Benign Benefit}}{\text{Victim Cost} + \text{Benign Benefit}}
\]
Utility Bounds

- Only if the attacker’s preference for attacking is above the red line, it is rational for it to attack.
- Only if the benign peer’s cost of being a victim is below the green line is it rational to participate in the system.
Energy Considerations

Benign Costs = 1
Victim Costs = 100
Effect of Attack Rate on Opponent Utility

Benign Costs = 1
Malicious Benefit = 100

- Attacker always attacks against naïve user, only 62% of the time against ResExp user
Conclusions

- Defined a utility model for peers
- Introduced Resource Exploration
 - Works well in malicious and uncertain environments
 - Scales well with respect to percentage of malicious peers
- Currently designing and testing Resource Exploration and in many environments